A Brief Survey of High-Level Approaches to
Implementing Distributed Applications

Suraj Kurapati
<skurapat@Qucsc.edu>
CMPE-185, Winter 2005

6th March 2005

Abstract

Using a low-level approach to implementing inter-process communica-
tion for distributed applications burdens the programmer with synchro-
nization issues that are usually irrelevant to the piece of business logic
being implemented. This article surveys various high-level approaches
which encapsulate inter-process communication whilst enabling the pro-
grammer to focus on implementing business logic.

1 Asynchronous Communication

Asynchronous methods of inter-process communication are well suited for dis-
tributed applications involving the computation of independent tasks. For ex-
ample, consider a distributed business application which retrieves the number of
new employees hired every year in the last 50 years. Assuming that the process
of retrieving the number of new employees hired in a given year does not depend
on that of the previous year, we can distribute the overall calculation across 50
different processes—each of which calculates the number of new employees hired
during a single year—and combine their individual results into one suitable for
the overall calculation.

In addition, asynchronous methods are error-prone when in multi-threaded
programming environments [1] due to lack of built-in synchronization facilities,
such as semaphores, to prevent communication of obsolete or incorrect data.

1.1 Shared Memory

Before the introduction of message-passing models of asynchronous communica-
tion in the late 1970’s [2], a technique called “shared memory” was widely in use
by supercomputers as a means of inter-process and -processor communication
[2]. As the name suggests, this technique involves the reading and writing of
data or messages to an area of shared memory. However, the disadvantages

of this approach are that (1) it does not scale well for distributed applications
running on computing clusters [2] and (2) it has synchronization issues such
as race conditions—which further complicate a distributed application because
semaphores are necessary to mitigate them. In addition, a shared memory model
is quite susceptible to failure because the corruption of the shared memory by a
disgruntled process or the loss of electrical power can bring it down, so to speak.

1.1.1 Component Object Model (COM)

COM is a shared-memory model of inter-process communication for the Mi-
crosoft Windows operating system [1]. It was originally implemented through
the “clipboard” facility and provided naming services through the “registry”
facility of said operating system [1]. Though the use of COM is widespread
in Microsoft Windows based applications, their programming interface can be
quite inhibiting. In particular, (1) “there is no implementation inheritance, thus
a component defining a derived interface must implement all functions of the
base interfaces again” [1], (2) COM is susceptible to failure because the event of a
“registry” corruption [1] can render inter-process communication nonfunctional,
and (3) destabilize the remainder of the operating system [1]. In addition, COM
functions over a single processor and does not facilitate communication over a
network [1, 2].

1.2 Parallel Virtual Machine (PVM)

PVM is a programming interface for distributed applications which can function
over a heterogeneous network composed of machines of different architectures
and processes implemented in different programming languages [2, 3]. PVM
achieves such portability because it provides the necessary “message format
transformation to hide differences in computer architectures” [2]. In addition,
PVM is “based on the premise that a collection of independent computer sys-
tems, interconnected by networks, can be transformed into a coherent, powerful,
and cost-effective concurrent computing resource” [3]. In other words, the aim of
PVM is to give its user the illusion that her computation is occurring on a single
machine [2]. This enables developers to focus on implementing the calculation
performed by their distributed application instead of the myriad of complexities
introduced by low-level inter-process communication.

PVM is very dynamic, in the sense that processes and machines on the net-
work can be added to and removed from the distributed computation without
having to bring it down [2]. It also provides a naming service, which allows
processes to dynamically discover other processes and services without being
hard-coded to do so [2]. Lastly, PVM is quite fault tolerant as it can dynam-
ically detect and send a notice, indicating which computer became faulty, to
functional computers [2]. Alternatively, PVM could command a faulty machine
to reboot itself, thereby minimizing the down-time of computational resources
in the network.

1.3 Message Passing Interface (MPI)

MPI is a programming interface for distributed applications which was origi-
nally developed by supercomputer vendors so that their applications could be
compatible with each other [2]. It was designed to function over a homogeneous
network of processes and processors, allowing it to take advantage of native
network calls to make inter-process communication more efficient [2]. In addi-
tion, MPI provides a powerful library of communication procedures that allow
point-to-point communication between two processes and point-to-group com-
munication between a single process and a group of processes [2]. However,
due to its reliance on network homogeneity, it cannot function over a network
of machines with different architectures or processes implemented in different
programming languages.

MPI is static, in the sense that processes and machines on the network can-
not be added to and removed from a distributed computation without having
to bring it down [2]. In addition, it does not provide a common naming service
which allows processes and groups of processes to discover each other. Conse-
quently, the allocation of groups and communication paths must be configured
before the distributed computation has started. Also, MPI does not have a
failure resolution mechanism to revive faulty machines in the computational
network [2].

Despite these shortcomings, MPI goes a step further, in terms of message-
passing communication methods, in providing support for seamless communica-
tion of derived data-types [2, 3]. That is, one is not strictly limited to primitive
data-types in inter-process communication.

2 Synchronous Communication

Synchronous methods of inter-process communication are well suited for dis-
tributed applications involving the computation of interdependent tasks. For
example, consider a distributed business application which calculates a statis-
tical correlation between the number of new employees hired in a given year
with that of the previous year, for each year in the last 50 years. In this situ-
ation, we cannot simply delegate the computation onto 50 different processes,
which perform independently of each other, and combine their results at the end.
Instead, each process must communicate with one which is computing the sta-
tistical correlation of the year before that of itself. Consequently, synchronous
communication, if implemented using low-level methods, become quite complex
as the number of dependencies in the functional decomposition of a computation
increases.

!Data-types integral to a programming language, such as an integer, character, or floating-
point number.

2.1 Remote Procedure Call (RPC)

RPC, introduced in 1984 [5], is a programming interface allows a process to
execute a procedure or routine on a remote processor as if it was executed on its
own processor [1]. It seamlessly encapsulates the synchronous communication
necessary to perform such remote procedure calls while also providing support
for automatic transmission of procedure-call arguments and return values [1].
However, one can only pass to and receive primitive data-types from RPC [1, 2].

The following sections describe methods of synchronous communication which
are based upon RPC.

2.1.1 Distributed Common Object Model (DCOM)

DCOM is a programming interface for the Microsoft Windows operating system
[2], which is described by Microsoft as “COM with a long wire” [2] because
it adds networking functionality to COM via RPC [2]. Like COM, DCOM
utilizes the “registry” facility of said operating system for naming services and
is therefore susceptible to failure (See Section 1.1.1). In addition, DCOM can
function across a homogeneous network of processes and heterogeneous network
of processors—which run the Microsoft Windows operating system [2].

2.1.2 Remote Method Invocation (RMI)

RMI, introduced with the Java Developer’s Kit 1.1 [5], is a programming in-
terface specific to the Java programming language. It can be thought of as
an object-oriented version of RPC which allows an object in one Java Virtual
Machine (JVM) to invoke a method on an object within another JVM—be it
local or remote [5, 6]. In particular, RMI facilitates transparent serialization
of objects and entire trees of their references—which allows the developer to
pass complex (local and remote [1]) data-structures as arguments in addition to
primitive data-types—and provides a naming service which allows Java objects
to discover each other. Also, because the JVM can function on a majority of
processor architectures [6, 5], RMI can function over a heterogeneous network
of processors and homogeneous network of JVM processes.

Furthermore, RMI changes the way developers think about and design dis-
tributed applications [5] by introducing the notion of “stubs” and “skeletons” in
decoupling the inter-process communication interfaces? and their implementa-
tion [5, 6]. The term “stub” refers to the interface seen by a Java application
that wishes to invoke a remote procedure, while the term “skeleton” refers to the
implementation of the stub’s Java programming interface [5, 6]. When a remote
procedure is invoked through the stub’s interface, the stub communicates with
the skeleton in the remote JVM, thereby performing a remote procedure call
[5, 6]. In addition, stubs can be downloaded from a remote JVM on demand
[1], which makes RMI ideal for dynamic ad-hoc wireless or mobile networks.

2The interface construct of the Java programming language.

2.1.3 Common Object Request Broker Architecture (CORBA)

CORBA is a programming interface which functions over a heterogeneous net-
work of processes and processors [2] and is “supported by a large industry consor-
tium” [1]. It centralizes inter-process communication through a primary proxy
known as the Object Request Broker (ORB) [2], which separates the implemen-
tation of computational procedures—known as “object services”[2]—from their
RPC interfaces [2, 1]. Like MPI, CORBA is particularly useful for static com-
putational networks, but ill-suited for dynamic ones, such as ad-hoc wireless or
mobile networks [1].

3 Graphical Programming

In addition to asynchronous and synchronous programming interfaces for imple-
menting distributed applications, there exist graphical methods which allow one
to implement “program decomposition, communication primitives (like PVM
and MPI calls) and task assignment to network topologies” [2]. In particular, [2]
cites a relatively successful project, which implements the aforementioned goals
of graphical programming, named “GRAPNEL”. This project also supports an
integrated development environment, named “GRADE” [2], which features a
distributed debugger, performance monitor, and visualization tools [2]. How-
ever, [3] notes that these graphical systems have not had much main-stream
acceptance as methods of inter-process communication.

4 Future Research

With the massive transition from low- to high-level methods of inter-process
communication in effect during the last twenty years, it would seem that there
is a trend in favor of encapsulating complex system-dependent communication
routines [2, 1] in standard high-level programming interfaces. With the advent
of high-level methods discussed in this article, the creation and management of
communication paths between various processes may very well become the next
problem—especially in static methods such as MPI and CORBA.

Upcoming graphical programming interfaces seek to facilitate the manage-
ment of communication paths and resource allocation by allowing one to visually
connect processes together. Though they may not have received much attention
as of yet [3], graphical programming methods may prove useful in managing
computational networks in the future—as the number of machines available to
perform distributed computations increases dramatically.

References

[1] F. Mattern and P. Sturm, “From Distributed Systems to Ubiquitous Com-
puting — The State of the Art, Trends, and Prospects of Future Networked

2]

13l

[4]

[5]

6]

Systems,” presented at Kommunikation in Verteilten Systemen (KiVS),
Leipzig, Germany, 2003.

P. Kacsuk and F. Vajda, “Network-based Dis-
tributed Computing (Metacomputing),” presented at
European Research Consortium for Informatics and Mathematics (ERCIM),

Computer and Automation Research Institute of the Hungarian Academy
of Sciences (MTA SZTAKI), Hungary, 1999.

V. Sunderam, “Heterogeneous network computing: the next generation,”
Parallel Computing, vol. 23, no. 1-2, Apr. 1997, pp. 121-135.

A. Wollrath, R. Riggs, and J. Waldo, “A Distributed
Object Model for the Java System,” presented at
Second USENIX Conference on Object-Oriented Technologies (COOTS),

Toronto, Ontario, Canada, June 17-21, 1996.

J. Waldo, “Remote procedure calls and Java Remote Method Invocation,”
IEEE Concurrency, vol. 6, no. 3, Jul. 1998, pp. 5-7.

Sun Microsystems, Inc. “Java Remote Method Invocation,” [Online docu-
ment], 2003 Dec 11, [cited 6 Feb 2005], Available HTTP: http://java.
sun.com/j2se/1.5.0/docs/guide/rmi/spec/rmiT0OC.html

