Knight's Tour in Cg

Suraj N. Kurapati

CMPE-220 final project

20 March 2007

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Agenda

Knight's Tour

- Ancient chess puzzle
- Visit every square once
- $\bullet \ \mathcal{NP} \ \text{complete}$
- Open tour
 - Hamiltonian path
- Closed tour
 - Hamiltonian cycle

Figure: Courtesy of Ilmari Karonen [5]

Naïve approach

- Depth-first search
- Backtrack from dead ends
- $O(8^n)$ time complexity

Variations

- Visit neighbors **out of order**
- Try random permutations
- Look up precomputed solutions

Figure: Possible moves for a knight.

Warnsdorff's heuristic

- Visit lowest ranking neighbor
 - Ties do not matter
- Eliminates backtracking
- Works most of the time

Definition

Rank — number of unvisited neighbors

イロト イヨト イヨト イヨト

= 990

Figure: Which neighbor to visit first?

Figure: Right neighbor has rank 5.

Figure: Middle neighbor has rank 7.

Figure: Left neighbor has rank 3.

Further optimizations

- 2, 3, · · · n square look ahead for Warnsdorff's heuristic
 - Tie arbitration
 - Multiple hops
- Parallel divide and conquer algorithms [2]
 - Divide board into 4 quadrants
 - Solve quadrants in parallel
 - Merge results together
- Genetic algorithms for tour discovery [3]

= 2000

Warnsdorff's heuristic in Cg

Parallel

- All squares calculate own rank
 - Knight simply reads neighboring ranks
- All squares calculate next move
 - Only knight's calculation is trusted

Sequential

• Only one knight is touring

Moving the knight

Problem

- Pixel shader's output position is fixed
- Cannot alter values of other pixels

Solution

- Knight indicates next square in tour
- Next square pulls knight onto itself

= nan

A knight's visit

 $\mathsf{Cycle}\ 1$

• Knight arrives

Cycle 2

• Neighboring ranks computed

Cycle 3

- Next square computed
- Knight leaves

- Knight indicates next square
- Knight prepares for departure

Figure: A knight's travel plans.

= 990

- Knight arrives
- Neighbors compute **wrong** rank

Figure: Previously...

Figure: Unbeknown, a knight arrives.

Knight's Tour in Cg

- Neighbors acknowledge knight
- Neighbors compute correct rank

Figure: Previously...

Figure: Hark! A knight be among us!

Knight's Tour in Cg

◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

- Knight indicates next square
- Knight prepares for departure

Figure: Previously...

Figure: A knight's travel plans.

Knight's Tour in Cg

・ロ・・西・・ ほ・・ ほ・ ほ

= 990

• The process continues

Figure: Previously...

Figure: The tour continues, as before.

Knight's Tour in Cg

Data structure

RGBA array of 32-bit floating point numbers

Red Counter for knight's visits 1, 2, ... n Green Counter for knight's decision cycle Blue Warnsdorff's rank at this square Alpha Knight's next move from this square

Sample output

chess board's width? 8
knight's starting row? 2
knight's starting column? 4

The Knight toured in this order:

27	12	37	16	25	2	47	18
36	15	26	13	50	17	24	3
11	28	63	38	1	48	19	46
56	35	14	49	62	51	4	23
29	10	57	64	39	22	45	20
34	55	32	61	52	59	42	5
9	30	53	58	7	40	21	44
54	33	8	31	60	43	6	41

◆□ → ◆□ → ◆三 → ◆三 → ◆□ → ◆○ ◆

chess board's width? 32
knight's starting row? 9
knight's starting column? 15

Knight's decision with Warnsdorff's heuristic

- minRank $\leftarrow \infty$
- successor $\leftarrow \emptyset$
- for each neighbor do
 - rank \leftarrow neighbor's rank
 - if rank < minRank
 - minRank \leftarrow rank
 - successor \leftarrow neighbor
 - end
- end

Figure: A knight and his neighbors.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > 三目目 のQ@

Tour duration with Warnsdorff's heuristic

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Introduction Mapping Results Analysis

Speedup from parallelization of rank calculation

speedup =
$$\frac{CPU_{duration}}{GPU_{duration}}$$

= $\frac{N_{knights} \times 72_{cycles}}{N_{knights} \times 24_{cycles}}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ■ ● のへの

Lessons learned

- OpenGL back buffer is RGBA8
 - Use FBO extension to preserve floats
- GL_TEXTURE_RECTANGLE_ARB does not fit to screen
 - Visualize data using GL_TEXTURE_2D
- texRECT() clamps out of bound indices
 - Check bounds beforehand
- Cg dislikes > 4 nested loops
 - Unroll loops with code generation
 - eRuby (embedded Ruby) template

K. McGown, A. Leininger, and P. Cull, "Knight's Tour", 15 August 2002, [Article]. Available: http://www.math. oregonstate.edu/~math_reu/Papers/Cull2-2002.pdf. [Accessed: 17 March 2007].

- I. Parberry, "An efficient algorithm for the Knight's tour problem", in *Discrete applied mathematics*, 1997, vol. 73, no. 3, pp. 251–260.
- V. S. Gordon and T. J. Slocum, "The knight's tour evolutionary vs. depth-first search", in Proc. *Congress on Evolutionary Computation*, 19–23 June 2004, vol. 2, pp. 1435–1440.

◆□ ▶ ◆冊 ▶ ◆臣 ▶ ◆臣 ▶ ●目目 ののの

 G. Törnberg, "Warndorff's rule", 1999, [Online document]. Available: http: //web.telia.com/~u85905224/knight/eWarnsd.htm. [Accessed: 16 March 2007].

I. Karonen, "Knight's Tour", [Image]. Available: http: //en.wikipedia.org/wiki/Image:Knight%27s_tour.svg. [Accessed: 20 March 2007].

<ロ> <日> <日> <日> <日> <日> <日> <日</p>

Thanks for your attention.