
Specification-driven functional verification with

Verilog PLI & VPI and SystemVerilog DPI

Suraj N. Kurapati

April 23, 2007



Abstract

Verilog—through its Programming Language Interface (PLI) and Verilog Pro-

cedural Interface (VPI)—and SystemVerilog—through its Direct Programming

Interface (DPI)—enable simulators to invoke user-defined C functions, which

then verify some aspect of an instantiated Verilog or SystemVerilog design.

This simulator-centric transfer of control inhibits specification-driven

functional verification, where an executable specification verifies a design first-

hand by progressively (1) applying a stimulus to the design, (2) simulating the

design by temporarily transferring control to the simulator, and (3) verifying

the design’s response to the applied stimulus.

This thesis presents (1) a way to achieve specification-driven functional

verification with Verilog PLI & VPI and SystemVerilog DPI; (2) a technique

that eliminates unnecessary code coupling between a design and its executable

specification; and (3) an application of these ideas using Verilog VPI and the

Ruby programming language.
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Chapter 1

Motivation

1.1 Agile practices in hardware development

Moore’s law states that “the number of transistors on a chip doubles about

every two years” [41]. The complexity of hardware designs undertaken has

grown accordingly, leading to increased development time, cost, and effort.

This trend is especially evident in design verification, as it “consumes about

70% of the design effort” [4, page 2] and“is increasingly becoming a bottleneck

in the design of embedded systems and system-on-chips (SoCs)” [13].

As a result, it has long become common for design firms to house a ded-

icated team of verification engineers, who often outnumber implementation

engineers by a factor of two [4, page 2]. However, this division of labor is

unfavorable when viewed in the light of agile software development practices

(see section A.4), which improve quality and reduce development time [19] by

having the same engineers perform verification alongside implementation.
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This thesis proposes an infrastructure that facilitates the application of

agile software development practices to the hardware development process (see

chapter 5). This infrastructure builds atop Ruby: a general purpose, purely

object oriented language that is ideal for rapid prototyping, design automation,

and systems integration (see section A.6).

1.2 Simulation-based functional verification

“Simulation has been, and continues to be, the primary method for functional

verification of hardware and system level designs”[13]. Simulation-based Hard-

ware Verification Languages (HVLs) such as e, Vera, and Specman have be-

come popular in recent years. However, like Verilog and SystemVerilog, they

lack the power of general purpose programmability necessary to integrate the

verification effort with other business processes.

For example, the results of an automated verification suite may need to be

integrated with project planning and management tools to improve estimates

of project completion or to locate particularly troublesome areas of the design

to which more verification effort must be allocated. For this reason, C language

interfaces like Verilog PLI are often the practical choice for simulation-based

functional verification.

Over the decades, Verilog PLI has evolved into simpler, more powerful

interfaces such as Verilog VPI and SystemVerilog DPI. However, despite this

evolution, these interfaces continue to facilitate the simulator-driven approach

to functional verification (see chapter 2). This thesis explores possible ways to
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achieve the more logical approach of specification-driven functional verification

for Verilog PLI & VPI and SystemVerilog DPI (see chapter 3).

3



Chapter 2

Problem

Verilog—through its Programming Language Interface (PLI) and Verilog Pro-

cedural Interface (VPI)—and SystemVerilog—through its Direct Programming

Interface (DPI)—enable simulators to invoke user-defined C functions. By in-

serting code that functionally verifies certain aspects of an instantiated Verilog

module into these C functions, one can functionally verify Verilog modules

whilst leveraging the general purpose programmability of the C language.

Because (1) the simulator invokes the user-defined C functions and (2) the

user-defined C functions perform functional verification, the simulator is in

charge of the functional verification process. Having the simulator in charge of

functional verification is called simulator-driven functional verification.

This chapter explores the problems associated with the simulator-driven

approach and the technical reasons for its existence.

4



2.1 Problems with simulator-driven approach

2.1.1 Dislocation of power

The main problem with simulator-driven functional verification is that the

power to perform functional verification is placed at the wrong level. To better

illustrate this claim, consider the following scenario:

A dog house must be built for your new dog. The necessary

materials have been provided to you: a hammer, nails, wooden

boards, and a blueprint for the dog house.

The hammer in placed in charge. It will summon you to perform

tasks on its behalf, such as nailing wooden boards together, veri-

fying that the dog house is being built according to the blueprint,

and so on.

Here, the task of building a dog house represents the task of performing func-

tional verification, the blueprint represents the specification, and the hammer

represents the simulator.

This scenario is both unpleasant and counter-intuitive because the power

to build the dog house has been placed at the wrong level: the hammer is but

a mere tool, whose sole purpose is to drive nails; it is unconcerned with the

larger task of building a dog house. Thus, the more logical approach would be

to grant you the power to build the dog house because you are (1) genuinely

concerned with the task of building a dog house and (2) capable of utilizing

all provided materials firsthand, whereas the hammer required you to perform

tasks on its behalf.

5



Likewise, the simulator is but a mere tool, whose sole purpose is to simulate

an instantiated Verilog module, that is unconcerned with the larger task of

performing functional verification. Thus, the more logical approach would be

to grant you the power to perform functional verification. However, due to

the overwhelming complexity of hardware designs undertaken today, it is both

impractical and error-prone for a human to perform functional verification

manually. For this reason, executable specifications—which are, in essence, a

combination of the blueprint (the rules for building a dog house) and yourself

(the entity capable of following the blueprint and interacting with all provided

materials to build the dog house)—are commonly used to perform functional

verification instead.

2.1.2 Communications overhead

The dislocation of power in simulator-driven functional verification causes ad-

ditional communications overhead between the simulator and the executable

specification because the simulator continually summons the executable spec-

ification to perform tasks on its behalf.

To illustrate, recall the scenario presented in the previous section: every

time the hammer needs to perform a task, it summons you to perform the

task on its behalf. Here, the act of the hammer summoning you represents the

additional communications overhead between the simulator and the executable

specification.

6



2.1.3 Re-entrant C functions

Recall that in simulator-driven functional verification, the simulator invokes

user-defined C functions to perform functional verification on its behalf. This

approach causes the code inside the user-defined C functions to be written in

a re-entrant fashion. When written in this fashion, inherently sequential code

becomes unnecessarily complex due to the explicit management of states and

transitions thereof.

For instance, observe how the inherently sequential code shown in figure

3.3 becomes unnecessarily complex, as shown in figure 3.4, when written in a

re-entrant fashion.

2.2 Reason for simulator-driven approach

Verilog PLI & VPI and SystemVerilog DPI enable simulator-driven func-

tional verification because (see figure 2.1) when the simulator invokes a user-

defined C function, they share a common call stack [35, page 4] in which the

simulator’s stack frame lies immediately below the function’s stack frame.

Due to this arrangement, the simulator cannot proceed until the function

returns. Likewise, the function cannot make the simulator proceed without

itself having returned. Thus, Verilog PLI & VPI and SystemVerilog DPI place

the simulator in charge of performing functional verification and thereby en-

able the simulator-driven approach.

7



Figure 2.1: Call stack shared by a simulator and the user-defined C function
it invokes. The times marked along the horizontal axis correspond to the
following events:

1. Simulator has control.

2. Simulator invokes a user-defined C function, foo. Now foo has control.

3. foo possibly invokes another function, bar, which may in turn invoke yet
another function, and so on.

4. bar returns along with the other functions it possibly invoked. Now foo
has control.

5. foo returns. Now the simulator has control.

8



Chapter 3

Solution

Recall that in simulator-driven functional verification, the simulator invokes

user-defined C functions to perform functional verification on its behalf. This

dislocation of power causes the rest of the problems associated with simulator-

driven functional verification. Thus, these problems can be eliminated by

allocating the power to perform functional verification at an appropriate level,

i.e. the executable specification.

Having the executable specification in charge of performing functional ver-

ification is called specification-driven functional verification. In this ap-

proach, an executable specification verifies a design firsthand by progressively

(1) applying a stimulus to the design, (2) simulating the design by temporarily

transferring control to the simulator, and (3) verifying the design’s response

to the applied stimulus.

Section 3.1 proposes technical solutions for achieving specification-driven

functional verification with Verilog PLI & VPI and SystemVerilog DPI.
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3.1 Separate call stacks

As section 2.2 discussed, we are restricted to simulator-driven functional ver-

ification with Verilog PLI & VPI and SystemVerilog DPI because the stack

frames of a simulator and the C function it invokes, exist within the same call

stack. Therefore, one solution is to provide separate call stacks for these stack

frames. In practice, however, this is only possible if a simulator and C function

exist either within (1) different threads or (2) different processes.

Placing the simulator and executable specification in different threads,

which exist within the same process, allows the specification to access its de-

sign naturally through the C library provided by Verilog PLI & VPI and

SystemVerilog DPI. In contrast, placing them in either (1) different processes

or (2) different threads within different processes, necessitates IPC (see sec-

tion A.3) as the specification cannot access to the aforementioned C library

directly.

The threads approach is simpler and more practical than the processes

approach because invoking C functions within a single process is trivial in

comparison to the relatively monumental task of deploying and managing in-

dependent processes in a distributed simulation through IPC. For this reason,

only the threads approach is considered henceforth.

3.1.1 Separation through POSIX threads and semaphores

The call stacks of simulator and specification can be separated through POSIX

threads and semaphores [15, file rbpli.c] as follows:

10



Figure 3.1: Illustration of call stacks separated through POSIX threads and
semaphores. Here, the simulator runs in the main process, while the specifica-
tion runs inside a POSIX thread. Shading denotes that a call stack is currently
paused due to a locked semaphore. The times marked along the horizontal axis
correspond to the following events:

1. Simulator has control.

2. Simulator transfers control to the specification by invoking the re-

lay_spec function shown in figure 3.2.

(a) Simulator is paused.

(b) Specification has control.

3. Specification possibly invokes other functions.

4. Specification has control.

5. Specification transfers control to the simulator by invoking the re-

lay_sim function shown in figure 3.2.

(a) Specification is paused.

(b) Simulator has control.

6. Simulator possibly invokes other functions.

7. Simulator has control.

8. Steps 2–7 repeat until the verification process is complete.

11



#include <stddef.h>

#include <pthread.h>

#include <vpi_user.h>

void* spec_run(void* dummy) {

/* 1. schedule a callback to relay_spec();

2. invoke relay_sim();

3. repeat */

return NULL;

}

pthread_t specThread;

pthread_mutex_t specLock;

pthread_mutex_t simLock;

PLI_INT32 relay_init(p_cb_data dummy) {

pthread_mutex_init(&specLock, NULL);

pthread_mutex_lock(&specLock);

pthread_mutex_init(&simLock, NULL);

pthread_mutex_lock(&simLock);

/* start the specification thread */

pthread_create(&specThread, NULL, spec_run, NULL);

pthread_mutex_lock(&simLock);

return 0;

}

/* Transfers control to the specification. */

void relay_spec() {

pthread_mutex_unlock(&specLock);

pthread_mutex_lock(&simLock);

}

/* Transfers control to the Verilog simulator. */

void relay_sim() {

pthread_mutex_unlock(&simLock);

pthread_mutex_lock(&specLock);

}

void startup() {

s_cb_data call;

call.reason = cbStartOfSimulation;

call.cb_rtn = relay_init;

call.obj = NULL;

call.time = NULL;

call.value = NULL;

call.user_data = NULL;

vpi_free_object(vpi_register_cb(&call));

}

void (*vlog_startup_routines[])() = { startup, NULL };

Figure 3.2: VPI application, based on [15, file rbpli.c], that enables
specification-driven functional verification by running the specification within
a POSIX thread.
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• The specification runs within a POSIX thread while the simulator runs

within the main process.

• Semaphores ensure that only the specification or the simulator is running

at any given time.

• The specification and simulator transfer control to each other by manip-

ulating the semaphores appropriately.

The separation achieved by this approach is illustrated in figure 3.1. In ad-

dition, the source code in figure 3.2 demonstrates how this approach can be

implemented with Verilog VPI.

In this source code, the startup function is first invoked by a Verilog simu-

lator because its function pointer is present within the vlog_startup_routines

array [18, page 374]. This function schedules a callback that invokes the re-

lay_init function just before the simulation begins.

When the relay_init function is invoked, it initiates a series of self-

generative callbacks1 by running the specification within a POSIX thread.

This thread endlessly (1) executes for some time, (2) transfers control to the

Verilog simulator, and (3) regains control from the Verilog simulator. In par-

ticular, it regains control by scheduling a callback to the relay_spec function

before transferring control to the Verilog simulator. Later, this callback causes

the Verilog simulator to transfer control to the specification.

The process of transferring control to and regaining control from a simula-

tor can be encapsulated by a function within the specification. For instance,

1Self-generative callbacks are used instead of system tasks and functions to avoid tight
coupling (see section A.2.2).

13



void verify_expectation() {

apply_stimulus();

simulate_design();

verify_response();

}

Figure 3.3: An expectation written for specification-driven functional verifica-
tion.

the simulate_design function in figure 3.3 serves this exact purpose.

3.1.2 Emulation through explicit finite state machines

It is possible to emulate the separation of call stacks by having the specification

remember from where within its source code it had last transferred control to

the simulator. This allows specification to resume execution from its previous

location when it regains control from the simulator.

As figure 3.4 shows, emulation is achieved by writing the specification and

its expectations as finite state machines. However, this style of writing is un-

natural and laborious because (1) it involves transforming an otherwise simple

sequence of steps into an explicit finite state machine; and because (2) tight

coupling is naturally present between each pair of adjacent states in these

particular finite state machines.

If Verilog PLI & VPI and SystemVerilog DPI truly enabled specification-

driven functional verification, a specification and its expectations could be

written naturally, with less effort, as illustrated by figure 3.3.

14



void verify_expectation() {

static enum {

stimulate,

simulate,

verify

} stage = stimulate;

switch (stage) {

case stimulate:

apply_stimulus();

stage = simulate;

break;

case simulate:

simulate_design();

stage = verify;

break;

case verify:

verify_response();

stage = stimulate;

break;

}

}

Figure 3.4: An expectation written for emulated specification-driven functional
verification. Note that a single invocation of the function shown in figure 3.3
is logically equivalent to three continuous invocations of the function shown
here.
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Chapter 4

Related works

Several related works are presented in the following subsections. Although

these works do not particularly tackle the problem of how to achieve specification-

driven functional verification with Verilog PLI & VPI and SystemVerilog DPI,

their contributions have been characterized as such for the sake of discussion.

4.1 Design-driven approaches

[8] presents Cadence TestBuilder, a C++ library built atop Verilog PLI that

enables executable specifications to be written in C++. Unfortunately, this

library takes the design-driven approach to functional verification because

it requires explicit (1) initialization of the executable specification via the

$tbv_main system task and (2) transfer of control from the simulator to the

executable specification via Verilog’s behavioral wait statement [8, page 5].
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4.1.1 Co-simulation with cycle-accurate emulator

[23] speeds up the simulation of a complex Verilog design by having an emulator

perform part of the simulation. It achieves this by implementing IPC over

network sockets through Verilog PLI system tasks to transmit the stimulus to

and receive the response from the emulator.

4.2 Simulator-driven approaches

[43] enables potential customers to functionally verify proprietary Verilog de-

signs whilst protecting proprietary interests through Verilog PLI and IPC over

network sockets. In this approach, the customer’s executable specification is

written in behavioral Verilog—which is considered unsuitable for verification

(see section A.1). Nevertheless, this approach is novel because the details of

the IPC are hidden from both the executable specification and the proprietary

design alike by automatically generated shell modules—modules which simply

wrap other modules, occasionally along with additional functionality.

4.2.1 Co-simulation of Verilog and System C

In United States Patent 20030093584, RPC is used through Verilog PLI to

connect a Verilog module to a behavioral System C module. This allows the

Verilog module to interact with the remote System C module as if they both

existed in the same simulation. However, this approach is still an example of

simulator-driven functional verification because the executable specification is

either written in behavioral Verilog or in C through the PLI.
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4.3 Specification-driven approaches

[1] presents a verification framework, named Raven, that enables specification-

driven functional verification with generic logic simulators of RTL and gate-

level HDL designs. In Raven, executable specifications are written in C++

using a library named Diagnostic Programming Interface (DPI), and the ex-

ecutable specification and the logic simulator communicate via IPC over net-

work sockets. Raven was used to verify a “1.1 million gate ASIC that routes

packetized messages on the interconnection network of a scalable multiproces-

sor” and was found to have a 10% performance penalty, due to the overhead

of IPC, over a standard Verilog test-bench [1, page 168].

Some criticisms of [1] are that it fails to specify (1) which particular logic

simulators were successfully used with Raven and (2) what must be done to

make a logic simulator service the IPC requests sent from Raven’s executable

specification. That is, there is no mention of any technologies—such as such

as Verilog PLI or VPI—that allow programs capable of servicing IPC requests

to be used with the RTL and gate-level HDL designs that Raven is supposed

to accommodate. Instead, [1] simply presents (1) data-type primitives used to

represent Verilog logic values in C++ and (2) the application-level protocol

used for Raven’s IPC, whilst omitting any details about their implementation.

18



Chapter 5

Application with Ruby-VPI

This chapter presents an application of the separation of call stacks through

POSIX threads and semaphores solution (see section 3.1.1) using Verilog VPI

and the Ruby programming language. In particular, this application is realized

through an open source software package named Ruby-VPI (see [21]).

Figure 5.1: Organization of a test in Ruby-VPI.
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5.1 Overview

Ruby-VPI is a bridge between IEEE 1364-2005 Verilog VPI and the Ruby

language. It enables Ruby programs to use VPI either (1) in the same, verbose

way that C programs do, or (2) in a simpler, higher level way. In addition, it

serves as a vehicle for the application of agile software development practices,

such as TDD and BDD, to the realm of hardware development with Verilog.

Ruby-VPI can be used with any Verilog simulator that supports VPI. In

particular, it known to operate with (1) Synopsys VCS and Mentor Modelsim,

the two most prominent Verilog simulators in the Electronic Design Automa-

tion (EDA) industry [12]; as well as (2) GPL Cver and Icarus Verilog, the two

most prevalent open source Verilog simulators of today.

As figure 5.1 shows, Ruby-VPI is composed of two complementary parts:

one interacts with VPI through the C language, while the other interacts

with an executable specification written in the Ruby language. The former

is complied during installation to produce dynamically loadable C libraries—

each tailored to accommodate the quirks of its respective Verilog simulator

(see section 5.2.5). The latter is not compiled because Ruby programs are

interpreted dynamically.

5.2 Motivation

C code. C code run. Run code run. Please! —Cynthia Dunning

The drudgery of using VPI through the C programming language and VPI’s

inherent dependence on simulator-driven functional verification were the pri-
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mary factors that motivated the creation of Ruby-VPI. These factors, among

others, are discussed in the following subsections.

5.2.1 Leveling up

Advancement to higher level languages is a proved strategy for managing the

ever-increasing complexity of software. In fact, it has been said to yield

“at least a factor of five in productivity, and with concomitant gains in re-

liability, simplicity, and comprehensibility” [6, page 15]. But how can such

advancement—a mere change of notation—possibly procure such remarkable

benefits? The answer is that a higher level language “frees a program from

much of its accidental complexity” [6, page 15].

For instance, consider the power notation in mathematics where a base

is raised to the power of an exponent: 22048. This is a higher level way of

writing the expression “2× 2” two thousand and forty eight consecutive times:

2 × 2 × · · · 2︸ ︷︷ ︸
2048

. Were it not for such notation, the expression of thought would

be far more laborious, repetitive, and erroneous. In this manner, higher level

programming languages are notations that enable us to reason abstractly using

sufficient notation to swiftly express, entertain, and dispose of the problem at

hand. In other words [6, page 15]:

An abstract program consists of conceptual constructs: op-
erations, data types, sequences, and communication. The con-
crete machine program is concerned with bits, registers, conditions,
branches, channels, disks, and such. To the extent that the high-
level language embodies the constructs one wants in the abstract
program and avoids all lower ones, it eliminates a whole level of
complexity that was never inherent in the program at all.
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This argument strongly motivates and justifies the use of a higher level lan-

guage, such as Ruby, in performing functional verification with Verilog VPI.

5.2.2 Irony of the system task

Quis custodiet ipsos custodes? —Juvenal, Satires, VI, 346–348

A system task is composed of two C functions: calltf and compiletf [36,

page 34 and 39]. The former is invoked whenever its associated system task is

invoked, and the latter is invoked, only once, before the simulation begins [36,

page 37].

Whereas the calltf function defines verification logic for a system task,

the sole purpose of the compiletf function is to verify that its system task,

and thereby its associated calltf function, is invoked correctly [36, page 37].

For example, it checks whether (1) the number of arguments passed to its

system task, and (2) the types of those arguments are correct [36, page 37].

This situation resembles the ancient, recursive dilemma quis custodiet ipsos

custodes? or who guards the guardians? by which, the compiletf function

procures a mere illusion of increased correctness while inadvertently sacrificing

ease of development, as compiletf functions must be written and maintained

alongside every system task that performs verification.

5.2.3 Reading and writing integers

Integers in VPI are 32 bits wide, as defined by the portable PLI_INT32 storage

type [18, page 522][36, page 163]. Due to this constraint, reading and writing
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the integer value of a register, whose width is larger than 32 bits, requires

additional processing.

For instance, one might process the string representation of the register’s

integer value in an incremental, piecewise fashion by transforming a subset

of the string into an integer or vice versa. Another option is to write or use

a library that encapsulates this process by providing integer operations that

act upon strings. Nevertheless, the integer/string conversion involved in this

process introduces the following accidental difficulties.

Memory management To avoid tight coupling (see section B.1) between

one’s C program and Verilog design, one might dynamically allocate buffers

for use during the integer/string conversion. However, one must now ensure

that (1) the memory occupied by those buffers are freed after the transfor-

mation, and that (2) one stays within the bounds of the buffers during their

use. Otherwise, memory leaks and buffer-overrun vulnerabilities may occur,

respectively.

Tight coupling To avoid the difficulties of memory management or per-

formance penalties [36, page 161] of dynamic memory allocation, one might

use fixed-length buffers, which are explicitly sized to accommodate the widths

of registers in the Verilog design, during the integer/string conversion. How-

ever, this arrangement is tightly coupled (see section B.1) because a change in

register width necessitates an analogous change in buffer size.
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result = some_module.all_reg? { |reg| reg.intVal > 1 }

Figure 5.2: Ruby expression that determines whether all registers associated
with a module presently have an integer value greater than one.

5.2.4 Verbosity of expression

He draweth out the thread of his verbosity finer than the staple of
his argument. —William Shakespeare, Love’s Labour’s Lost, 5:1

Because the C programming language is a high level language, i.e. one level

of abstraction higher than assembler, it seems verbose in comparison to very

high level languages such as Ruby. This verbosity of expression necessitates

increased effort to perform even the most basic of tasks.

For example, consider the expressions shown in figures 5.2 and 5.3. Both

determine whether all registers associated with a module, whose handle is

stored in the some_module variable, presently have a logic value that is greater

than one when accessed in integer form. The result of each expression is

ultimately stored in the result variable.

Notice how the Ruby expression captures the intent of our task in a clear,

concise manner. It seems to read out loud: “the result is whether some module

has all registers such that each register has an integer value greater than one”.

In contrast, the C expression mechanically orchestrates our task, more so than

reflecting our intent, in painstaking detail. It seems to drone: “assume result

true; declare local variables; iterate over registers; read integer value; check

integer value; adjust result; free iterator. . . ” ad nauseam.
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int result = 1; /* true */

s_vpi_value wrapper;

vpiHandle reg;

vpiHandle iterator = vpi_iterate( vpiReg, some_module );

while (reg = vpi_scan( iterator )) {

wrapper.format = vpiIntVal;

vpi_get_value( reg, wrapper );

if (wrapper.value.integer <= 1) {

result = 0; /* false */

vpi_free_object( iterator );

break;

}

}

Figure 5.3: C expression that determines whether all registers associated with
a module presently have an integer value greater than one.

5.2.5 Appeasing the simulator

Not all Verilog simulators adhere to the VPI specification. For instance,

whereas [18, page 522] defines user-defined system tasks and functions as hav-

ing the form:

PLI_INT32 foo ( PLI_BYTE8* );

Synopsys VCS, one of the two most prominent Verilog simulators in use today

[12], ignores them unless they are written in the form:

void foo ( void );

Therefore, in order to maintain portability across different Verilog simulators,

one must appease them conditionally through the #ifdef directive of the C

preprocessor.
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5.3 Organization

Being an agile programming language, Ruby naturally facilitates agile software

development practices such as TDD and BDD. Furthermore, since Ruby-VPI

augments Ruby with the IEEE 1364-2005 Verilog VPI, it extends the reach of

these agile software development practices to the otherwise unreachable realm

of hardware development.

To better facilitate the application of agile practices to hardware devel-

opment, Ruby-VPI follows the convention over configuration [40] phi-

losophy with respect to the organization and performance of functional ver-

ification. This philosophy promotes the provision of “sensible defaults” [40,

page 37], which allow specifications to be “written using little or no external

configuration—things just knit themselves together in a natural way” [40, page

37].

The following subsections discuss the conventions posed by Ruby-VPI.

5.3.1 Tests

In Ruby-VPI, the process of functional verification is neatly packaged into self-

contained, executable tests. As figure 5.1 illustrates, a test is composed of a

bench, a design, and a specification.

The bench defines the environment in which functional verification takes

place. It is analogous to a workbench in an electronics laboratory that is

furnished with tools of measurement and manipulation such as oscilloscopes,

voltmeters, soldering irons, and so on. These tools enable engineers to verify
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$ generate_test.rb foo.v --name bar

module foo

create foo_bar_runner.rake

create foo_bar_bench.v

create foo_bar_bench.rb

create foo_bar_design.rb

create foo_bar_proto.rb

create foo_bar_spec.rb

Figure 5.4: Using the automated test generator.

electronic components and locate the source of defects within those compo-

nents.

The design is an instantiated Verilog module. To extend the analogy of

the electronics laboratory, it corresponds to the electronic component that is

verified by an engineer.

The specification is a Ruby program. In the electronics laboratory analogy,

it corresponds to the engineer who inspects, manipulates, and verifies the

electronic component. In terms of specification-driven functional verification,

it corresponds to the executable specification.

5.3.1.1 Automated test generation

Ruby-VPI provides a tool, known as the automated test generator, which

generates tests from Verilog module declarations (see figure 5.4) that adhere

to the syntax defined by [17, pages 762–763] or [18, page 487]. A generated

test is composed of the following files:

runner.rake runs the test by executing a Verilog simulator with Ruby-VPI.
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bench.v instantiates the Verilog module being verified.

bench.rb bootstraps the test by loading the design, prototype, and specifi-

cation.

design.rb provides a Ruby interface to the Verilog module being verified.

proto.rb defines a Ruby prototype of the Verilog module being verified.

spec.rb the executable specification for the Verilog module being verified.

As figure 5.4 shows, the name of each generated file is prefixed with (1) the

name of the Verilog module for which the test was generated and (2) a user-

defined identifier for the test. This convention helps organize tests within the

file system, so that they are readily distinguishable from one another.

By producing multiple files, the automated test generator physically de-

couples the various parts of a test. As a result, when the interface of a Ver-

ilog module changes, you can simply regenerate the test to incorporate those

changes without diverting your focus from the task at hand. Furthermore, the

incorporation of changes can be catalyzed by interactive text merging tools,

which allow you to selectively accept or reject the merging of changes into

your source code. Fully automated text merging tools may also be used for

this purpose.

5.3.2 Interface to VPI

Ruby-VPI makes the entire IEEE Std 1364-2005 VPI interface available to

Ruby, but with the following minor differences.
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#include <stdarg.h>

void foo(va_list ap) {

va_list *p = &ap;

}

Figure 5.5: C program that causes a “type mismatch” error in some compilers.

Names are capitalized The names of all VPI types, structures, and con-

stants become capitalized because Ruby requires that the names of constants

begin with a capital letter. For example, the s_vpi_value structure becomes

the S_vpi_value class in Ruby. Likewise, the vpiIntVal constant becomes

the VpiIntVal constant in Ruby.

However, Ruby’s capitalization rule does not apply to VPI functions; their

names appear in Ruby just as they do in C.

Use Ruby’s printf The VPI functions vpi_vprintf and vpi_mcd_vprintf

are not made accessible to Ruby because some C compilers have trouble with

pointers to the va_list storage type. For example, these compilers emit a type

mismatch error upon encountering the third line of the source code shown in

figure 5.5. For this reason, you are advised to use Ruby’s printf method,

which is functionally equivalent to its C counterpart, instead.

5.3.2.1 Handles

A handle is a reference to an object—such as a module, register, wire, and

so on—inside the Verilog simulation. Handles allows you to inspect and ma-

nipulate the design under verification and its internal components. They are

instances of the Vpi::Handle class in Ruby-VPI.
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Accessor Kind of value accessed VPI functions used to access the value

d delay vpi_get_delays and vpi_put_delays

l logic vpi_get_value and vpi_put_value

i integer vpi_get

b boolean vpi_get

s string vpi_get_str

h handle vpi_handle

Figure 5.6: Accessors and their implications.

Handles have various properties, listed in the second column of table 5.6,

which provide different kinds of information about the underlying Verilog ob-

jects they represent. These properties are accessed through the VPI functions

listed in the last column of said table.

Handles are typically obtained through the vpi_handle_by_name and vpi_handle

functions. These functions are hierarchical in nature, as they allow you to ob-

tain new handles that are related to existing ones. For example, to obtain a

handle to a register contained within a module, one would typically write:

some_reg = vpi_handle( VpiReg, some_handle )

Shortcuts for productivity Given a handle, Ruby-VPI allows you to ac-

cess (1) its relatives and (2) its properties simply by invoking methods on the

handle. If a handle’s relative happens to have the same name as one its proper-

ties, then the relative is given priority because a handle’s properties can always

be accessed explicitly through the handle.get_value and handle.put_value

methods.
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5.3.2.2 Accessing a handle’s relatives

Imagine that the design under verification, say foo, instantiated a Verilog mod-

ule named bar, which in turn contained a register named baz. To access baz

from Ruby, one could employ VPI idioms by writing:

foo = vpi_handle_by_name( "foo", nil )

bar = vpi_handle_by_name( "bar", foo )

baz = vpi_handle_by_name( "baz", bar )

or by writing:

baz = vpi_handle_by_name( "foo.bar.bar", nil )

These idioms seem excessively verbose in a higher level language such as Ruby,

so Ruby-VPI allows you to access a handle’s relative by simply invoking the

relative’s name as a method on the handle:

foo.bar.baz

5.3.2.3 Accessing a handle’s properties

Imagine that the design under test, say foo, contained a register named bar.

To access the integer value of bar in Ruby-VPI, one could employ VPI idioms

by writing:

wrapper = S_vpi_value.new

wrapper.format = VpiIntVal

vpi_get_value( foo.bar, wrapper )

result = wrapper.value.integer
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or, if bar is capable of storing more than 32 bits, one would convert a string

representation of bar ’s integer value into a limitless1 Ruby integer by writing:

wrapper = S_vpi_value.new

wrapper.format = VpiHexStrVal

vpi_get_value( foo.bar, wrapper )

result = wrapper.value.str.to_i( 16 )

These idioms seem excessively verbose in a higher level language such as Ruby,

so Ruby-VPI allows you to access a handle’s properties by simply invoking

property names, using the special naming format shown in figure 5.7, as meth-

ods on the handle:

result = foo.bar.intVal

Examples To better understand the method naming format shown in figure

5.7, consider the following examples. Each example lists a set of equivalent

Ruby expressions which access the value of a handle’s property and, in some

cases, perform an operation with that value.

• Obtain the logic value of the handle’s VpiIntVal property.

handle.vpiIntVal

handle.vpiIntVal_l

handle.intVal

handle.intVal_l

1Integers in Ruby “can be any length (up to a maximum determined by the amount of
free memory on your system)” [39, page 55].
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Operation Property Accessor Addendum

optional required optional

Figure 5.7: Method naming format for accessing a handle’s properties.

Operation specifies a method that should be invoked within the context of
the Property parameter. All methods in Ruby’s Enumerable module are
valid operations.

Property suggests a VPI property that should be accessed. The vpi prefix,
which is common to all VPI properties, can be omitted if you wish.
For example, the VPI property vpiFullName is considered equivalent to
fullName and FullName, but not equivalent to full_name.

Accessor suggests a VPI function that should be used in order to access
the VPI property. When this parameter is not specified, Ruby-VPI will
attempt to guess its value. Table 5.6 shows a list of valid accessors and
how they influence the means by which a property is accessed.

Addendum suggests that the specified VPI property should be written to,
when the value of this parameter is an equal sign (=).

In addition, when the value of this parameter is a question mark
(?), it suggests that the specified VPI property should be accessed as
a boolean value. This suggestion is the same as specifying b for the
Accessor parameter.
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• Set the logic value of the handle’s VpiIntVal property to the integer

22048.

handle.vpiIntVal = 2 ** 2048

handle.vpiIntVal_l = 2 ** 2048

handle.intVal = 2 ** 2048

handle.intVal_l = 2 ** 2048

• Obtain the integer value of the handle’s VpiType property.

handle.vpiType

handle.vpiType_i

handle.type

handle.type_i

• Obtain the boolean value of the handle’s VpiProtected property.

handle.vpiProtected

handle.vpiProtected_b

handle.vpiProtected?

handle.protected

handle.protected_b

handle.protected?

• Obtain the string value of the handle’s VpiFullName property.

handle.vpiFullName

handle.vpiFullName_s
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handle.fullName

handle.fullName_s

• Obtain the handle value of the handle’s VpiParent property.

handle.vpiParent

handle.vpiParent_h

handle.parent

handle.parent_h

• Use the each operation to print the full name of each net object associ-

ated with the handle.

handle.each_vpiNet { |net| puts net.fullName }

handle.each_net { |net| puts net.fullName }

handle.each(VpiNet) { |net| puts net.fullName }

handle[VpiNet].each { |net| puts net.fullName }

• Use the all? operation to check whether all register objects associated

with the handle are capable of storing exactly one bit of information.

handle.all_vpiReg? { |reg| reg.size == 1 }

handle.all_reg? { |reg| reg.size == 1 }

handle.all?(VpiReg) { |reg| reg.size == 1 }

handle[VpiReg].all? { |reg| reg.size == 1 }
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5.3.3 Interaction with Verilog

A specification simulates the Verilog design by invoking the Vpi::simulate

method. This method is vaguely named because its semantics depend on the

particular design being verified. The task of defining those semantics is given

to the bench.rb file since it is responsible for defining the environment for

functional verification. It achieves this task by passing a block of code to

the RubyVpi::init_bench method, which then executes that block whenever

Vpi::simulate is invoked.

5.4 Mechanics

Ruby-VPI employs the technique discussed in section 3.1.1 to enable specification-

driven functional verification. However, the details differ slightly because in

Ruby-VPI, executable specifications are written in Ruby rather than in C.

These differences are discussed in the following subsections.

5.4.1 Execution of a test

When a test runner runs a test (see section 5.3.1), it invokes a Verilog simu-

lator along with a precompiled shared-object file provided by Ruby-VPI. This

file contains a particular definition of the vlog_startup_routines array that

schedules a callback to be executed just before the start of the simulation.

Upon execution, this callback starts a Ruby interpreter within a POSIX

thread. The interpreter begins processing the test’s bench.rb file, which loads

the remaining Ruby source files that belong to the test and then initiates
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execution of the specification. Once the specification functionally verifies the

Verilog design, the Ruby interpreter, its containing POSIX thread, and the

Verilog simulator exit in succession.

5.4.2 Transfer of control

The primary means of control transfer from the Ruby interpreter to the Verilog

simulator is the Vpi::advance_time method shown in figure 5.8.

The secondary means of control transfer is the callback. Callbacks are

scheduled in Ruby in much the same way as they are in C. The only difference

is that instead of storing the address of a C function in the cb_rtn field of

the s_cb_data structure—as you would do in C—you pass a block of code

to the vpi_register_cb method in Ruby. This block will then be executed

whenever the callback occurs.

5.4.3 Seamless prototyping

Ruby-VPI enables rapid prototyping where one can model the behavior of Ver-

ilog designs purely in Ruby. This process is wholly transparent: there is abso-

lutely no difference, in terms of the executable specification’s implementation,

between the functional verification of a real Verilog design or its Ruby proto-

type. Furthermore, prototypes exhibit their artificial behavior using nothing

more than the VPI itself.

For example, compare the Verilog design shown in figure 5.16 with its Ruby

prototype shown in figure 5.15. The prototype uses only VPI to (1) detect

changes in its inputs and (2) manipulate its outputs accordingly. In addition,
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Figure 5.8: Primary means of control transfer from Ruby to Verilog. This
diagram should be read from left to right, according to the following sequence
of events:

1. The specification has control.

2. The current simulation time is x.

3. The specification invokes the Vpi::advance_time method with param-
eter y, which specifies the number of simulation time steps to be sim-
ulated. This method temporarily transfers control from Ruby to the
Verilog simulator.

4. The Verilog simulator has control.

5. The current simulation time is still x.

6. The Verilog simulator simulates y simulation time steps.

7. The current simulation time is now x + y.

8. The Verilog simulator returns control back to the specification.
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notice how well the prototype’s syntax reflects the intended behavior of the

Verilog design. This similarity facilitates rapid translation of a prototype from

Ruby into Verilog later in the design process.

Activation Prototyping is enabled by setting the PROTOTYPE environment

variable to a non-empty value, as demonstrated in figures 5.17 and 5.18. Like-

wise, it is disabled by either (1) setting the PROTOTYPE environment variable

to an empty value or (2) un-setting the variable altogether.

Mechanism The Vpi::advance_time method normally transfers control to

the Verilog simulator. However, when prototyping is enabled, it invokes the

simulate! method, which is defined in a test’s proto.rb file, instead. This

method artificially simulates the behavior of the real Verilog design.

In this manner, control is kept within the Ruby interpreter when proto-

typing is enabled. An advantage of this approach is that it reduces the total

execution time2 of a Ruby-VPI test by allowing Ruby’s POSIX thread to com-

mandeer the Verilog simulator’s process. A disadvantage of this approach is

that callbacks, which require the transfer of control to the Verilog simulator,

must be ignored.

5.5 Usage

This section presents a guide that illustrates how Ruby-VPI is commonly used.

This guide is composed of the following steps, which are discussed in more

2Observed empirically.
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detail in subsequent sections.

1. Start with a design you want to verify.

2. Generate a test for your design using the automated test generator.

3. Identify your expectations about the design.

4. Add your expectations to the executable specification.

5. Run the test to functionally verify your design.

6. Change your design’s source code so that it satisfies any failed expecta-

tions.

7. Repeat steps 3–6 as necessary.

This sequence of steps lends itself to the iterative style of development, em-

phasized in the agile practices of TDD and BDD, because it can be performed

iteratively as follows:

1. Choose one expectation to verify.

2. Add the expectation to the executable specification.

3. Verify the design against the executable specification.

4. Change the design’s source code so that it satisfies any failed expecta-

tions.

5. Repeat steps 1–4 until you are satisfied.
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module counter #(parameter Size = 5) (

input clock,

input reset,

output reg [Size - 1 : 0] count

);

endmodule

Figure 5.9: Declaration of a simple up-counter with synchronous reset.

5.5.1 Start with a design

First, we need a design to functionally verify. In this guide, the Verilog module

shown in figure 5.9 will serve as our design. Its interface is composed of the

following parts:

• Size defines the number of bits used to represent the counter’s value.

• Positive edges of the clock signal cause the count register to increment.

• Assertion of reset causes the count register to become zero.

• count is a register that contains the counter’s value.

Before we continue, save the source code shown in figure 5.9 into a file named

counter.v.

5.5.2 Generate a test

Now that we have a design to verify, let us generate a test for it using the

automated test generator. This tool allows us to implement our specification

in either RSpec, xUnit, or our very own format:
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$ generate_test.rb counter.v --rspec --name rspec

module counter

create counter_rspec_runner.rake

create counter_rspec_bench.v

create counter_rspec_bench.rb

create counter_rspec_design.rb

create counter_rspec_proto.rb

create counter_rspec_spec.rb

Figure 5.10: Generating a test with specification in RSpec format.

• RSpec [29, 2] is a framework that enables BDD (see section A.4.2) in

Ruby.

• xUnit refers to an entire family of frameworks that enable TDD (see sec-

tion A.4.1) in various programming languages [14]. Ruby ships with an

implementation of xUnit, known as Test::Unit, in its standard library

[39, page 144].

• Our own format gives us the freedom to implement our specification

in any way we please. As a result, there are too many possibilities to

enumerate within the length of this discussion. So we shall consider only

RSpec and xUnit henceforth, for brevity.

Once we have decided how we want to implement our specification, we can

proceed to generate a test for our design. This process is illustrated by figures

5.10 and 5.11.
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$ generate_test.rb counter.v --xunit --name xunit

module counter

create counter_xunit_runner.rake

create counter_xunit_bench.v

create counter_xunit_bench.rb

create counter_xunit_design.rb

create counter_xunit_proto.rb

create counter_xunit_spec.rb

Figure 5.11: Generating a test with specification in xUnit format.

5.5.3 Specify your expectations

So far, the test generation tool has created a basic foundation for our test.

Now we must build upon this foundation by identifying our expectation of

the design. That is, how do we expect the design to behave under certain

conditions?

Here are some reasonable expectations for our simple counter:

• A resetted counter’s value should be zero.

• A resetted counter’s value should increment upon rising clock edges.

• A counter with the maximum value should overflow upon increment.

Now that we have identified a set of expectations for our design, we are ready

to implement them in our specification. Figures 5.12 and 5.13 show how our

expectations would appear after being implemented in the RSpec and xUnit

specification formats respectively. Notice the striking similarity between these

specifications: they differ in syntax but appear identical otherwise.

Before we continue,
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# tight upper bound for counter’s value

LIMIT = 2 ** Counter.Size.intVal

# maximum allowed value for a counter

MAX = LIMIT - 1

context "A resetted counter’s value" do

setup do

Counter.reset!

end

specify "should be zero" do

Counter.count.intVal.should == 0

end

specify "should increment upon rising clock edges" do

LIMIT.times do |i|

Counter.count.intVal.should == i

simulate # increment the counter

end

end

end

context "A counter with the maximum value" do

setup do

Counter.reset!

# increment the counter to maximum value

MAX.times { simulate }

Counter.count.intVal.should == MAX

end

specify "should overflow upon increment" do

simulate # increment the counter

Counter.count.intVal.should == 0

end

end

Figure 5.12: A specification that implements the expectations listed in section
5.5.3 using the RSpec specification format.
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# tight upper bound for counter’s value

LIMIT = 2 ** Counter.Size.intVal

# maximum allowed value for a counter

MAX = LIMIT - 1

class ResettedCounterValue < Test::Unit::TestCase

def setup

Counter.reset!

end

def test_zero

assert_equal 0, Counter.count.intVal

end

def test_increment

LIMIT.times do |i|

assert_equal i, Counter.count.intVal

simulate # increment the counter

end

end

end

class MaximumCounterValue < Test::Unit::TestCase

def setup

Counter.reset!

# increment the counter to maximum value

MAX.times { simulate }

assert_equal MAX, Counter.count.intVal

end

def test_overflow

simulate # increment the counter

assert_equal 0, Counter.count.intVal

end

end

Figure 5.13: A specification that implements the expectations listed in section
5.5.3 using the xUnit specification format.
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def Counter.reset!

reset.intVal = 1

simulate

reset.intVal = 0

end

Figure 5.14: Ruby interface to the design under verification. The method
shown here resets the design by asserting its reset signal, simulating it for
one clock cycle, and then deasserting its reset signal.

1. Replace the contents of the file named counter_rspec_spec.rb with

the source code shown in figure 5.12.

2. Replace the contents of the file named counter_xunit_spec.rb with

the source code shown in figure 5.13.

3. Replace the contents of the files named counter_rspec_design.rb and

counter_xunit_design.rb with the source code shown in figure 5.14.

5.5.4 Prototype the design

Now that we have a specification against which to verify our design, let us build

a prototype of our design. By doing so, we exercise our specification, experience

potential problems that may arise when we later implement our design in

Verilog, and gain confidence in our work. However, note that prototyping is

wholly optional; the main aim of Ruby-VPI is to allow functional verification

of real Verilog modules, not of mere behavioral prototypes.

Figure 5.15 shows an example prototype for our design. Before we con-

tinue, replace the contents of the files named counter_rspec_proto.rb and

counter_xunit_proto.rb with the source code shown this figure.
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def Counter.simulate!

if clock.posedge?

if reset.intVal == 1

count.intVal = 0

else

count.intVal += 1

end

end

end

Figure 5.15: A Ruby prototype of the Verilog design under verification. When
prototyping is enabled, Vpi::advance_time invokes the method shown here
instead of transferring control to the Verilog simulator.

module counter #(parameter Size = 5) (

input clock,

input reset,

output reg [Size - 1 : 0] count

);

always @(posedge clock) begin

if (reset)

count <= 0;

else

count <= count + 1;

end

endmodule

Figure 5.16: Implementation of a simple up-counter with synchronous reset.
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$ rake -f counter_rspec_runner.rake cver PROTOTYPE=1

Ruby-VPI: prototype has been enabled for test "counter_rspec"

A resetted counter’s value

- should be zero

- should increment upon rising clock edges

A counter with the maximum value

- should overflow upon increment

Finished in 0.018199 seconds

3 specifications, 0 failures

Figure 5.17: Verifying the prototype of the design under verification with the
specification implemented in RSpec format.

5.5.5 Verify the prototype

Now that we have implemented our prototype, we are ready to verify it against

our specification by running the test. This process is illustrated by the figures

5.17 and 5.18.

In these figures, the PROTOTYPE environment variable is assigned a non-

empty value while running the test so that, rather than our design, our pro-

totype is verified against our specification. You may also assign a value to

PROTOTYPE before running the test through your shell’s export or setenv

command. Finally, the GPL Cver simulator, denoted by cver, is used to run

the simulation.
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$ rake -f counter_xunit_runner.rake cver PROTOTYPE=1

Ruby-VPI: prototype has been enabled for test "counter_xunit"

Loaded suite counter_xunit_bench

Started

...

Finished in 0.040668 seconds.

3 tests, 35 assertions, 0 failures, 0 errors

Figure 5.18: Verifying the prototype of the design under verification with the
specification implemented in xUnit format.

5.5.6 Implement the design

Now that we have implemented and verified our prototype, we are ready to

implement our design. This is often quite simple as we can translate existing

code from our Ruby prototype into our Verilog design. For instance, notice

the similarity between the implementation of our design, shown in figure 5.16,

and its prototype, shown in figure 5.15.

Before we continue, replace the contents of the file named counter.v with

the source code shown in figure 5.16.

5.5.7 Verify the design

Now that we have implemented our design, we are ready to verify it against

our specification by running the test. This process is identical to the one

used in verifying our prototype (see section 5.5.5) except that the PROTOTYPE

environment variable is not specified while running the test. This ensures that

our design, rather than our prototype, is verified against our specification.
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Chapter 6

Evaluation

6.1 Proposed solution

The proposed solution of separating call stacks through the use of POSIX

threads and semaphores has been successfully implemented for Verilog VPI in

both (1) figure 3.2 and (2) the Ruby-VPI project.

Although implementations of this solution for Verilog PLI and SystemVer-

ilog DPI have not been presented in this thesis, they would be very similar in

nature to that of Verilog VPI. In particular, the only major difference between

implementations would be the use of different programming interfaces: Verilog

PLI would be used for the Verilog PLI solution, and SystemVerilog DPI would

be used for the SystemVerilog DPI solution.
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6.1.1 Contribution

The proposed solution is based on [15, file rbpli.c], which uses VPI system

tasks to transfer control between the simulator and the executable specifica-

tion, and thereby employs the design-driven approach to functional verifica-

tion.

My primary contribution to this solution is transforming the design-driven

approach of [15, file rbpli.c] into a specification-driven approach by eliminat-

ing tight coupling between the design and the executable specification through

the use of self-generative callbacks.

6.2 Ruby-VPI project

The primary goal of Ruby-VPI was to provide a way to functionally verify

Verilog modules using a unit testing framework—in the same way that software

modules are functionally verified. In short, this goal would provide the means

to apply agile software development practices, such as TDD and BDD, to the

realm of RTL-based hardware development with Verilog.

The secondary goal of Ruby-VPI was to provide a way to rapidly prototype

the functionality of Verilog modules in Ruby without having to first implement

them in full using Verilog. This would allow for quicker prototyping because

implementing a Verilog module in full typically requires more effort than em-

ulating the module’s behavior in Ruby (see section 5.5.5).

Both goals have been accomplished successfully.
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6.2.1 Contribution

In October 1999, Japanese researcher Kazuhiro Hiwada pioneered the tech-

nique of separating the stack frames of the Verilog simulator and the speci-

fication through POSIX threads and semaphores. He released this work, as

a proof of concept, under the name Ruby-VPI (see [15]). It enabled one to

execute a predefined Ruby program from within a Verilog module through the

use of predefined VPI system tasks. However, that was the extent of its ca-

pability; it provided neither (1) the means to pass parameters from Verilog to

the Ruby program nor (2) a means to access VPI from within Ruby.

Seven years later, in February 2006, I happened upon Hiwada’s work while

searching for Ruby bindings to Verilog PLI or VPI in order to simplify the

task of writing a fairly complex Verilog test bench. I augmented his work

with the ability to (1) pass parameters from Verilog to Ruby and (2) access

the Verilog module under test through a minuscule subset of VPI. Next, I

attempted to contact him, in hopes of contributing my additions, but failed to

locate a more recent means of communication than an obsolete e-mail address

listed on his old (circa 1999) website. Alas, it seemed that Ruby-VPI was

genuinely abandoned, so I decided to revive it in the form of an open source1

software project.

Over the course of a year, I developed Ruby-VPI into a stable, functional

platform for specification-driven functional verification. My notable contribu-

tions include (1) the addition of the ability to access the entire IEEE 1364-2005

1I finally heard from Hiwada in August 2006 and received his written permission to
continue developing Ruby-VPI as an open source software project.
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Verilog VPI from within Ruby, (2) the decoupling of the Verilog design from

the specification through the self-generative callbacks technique, (3) the pro-

duction and maintenance of a comprehensive user manual, and (4) integration

with unit testing frameworks (xUnit and RSpec), interactive debuggers (ruby-

debug), code coverage analyzers (RCov), and build automation tools (Rake).
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Chapter 7

Conclusion

Although specification-driven functional verification is not enabled by Verilog

PLI & VPI and SystemVerilog DPI, it can be achieved nevertheless by separat-

ing the call stacks of the simulator and the C function it invokes. At present,

this separation is only possible by running the simulator and executable speci-

fication within (1) different threads or (2) different processes. In terms of ease

of implementation and maintenance effort, the former approach is the simpler

of the two.

Ruby-VPI lifts the burden of using Verilog VPI in the C programming

language by enabling engineers to functionally verify Verilog designs at a very

high level. Raising the level of abstraction allows engineers to focus on the

problem at hand rather than struggling with low level details [6]. Furthermore,

Ruby-VPI brings agile development practices, such as TDD and BDD, to the

otherwise inapplicable realm of hardware development.
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7.1 Future work

The method of separating the simulator and the executable specification through

the use of POSIX threads and semaphores may be applied in enabling specification-

driven functional verification with very high level languages other than Ruby,

such as Python, Lisp, and Smalltalk.

Ruby-VPI can be extended to simplify other verification tasks through

DSLs. Transaction-based verification (see [5]) is one problem domain where

such DSLs might prove useful. This form of verification is better known as

Transaction Level Modeling (TLM) in the realm of Electronic System Level

(ESL) design—an industry primarily concerned with the integration of hard-

ware and embedded software. In this domain, a Ruby-based DSL would offer

a higher level of abstraction than what System C—the most popular DSL

in the ESL domain [12]—is capable, due to the latter’s heritage of low level

expression from the C programming language.
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Appendix A

Background

A.1 Reason for PLI, VPI, and DPI interfaces

Verilog is considered unsuitable for verification because it lacks features, such

as high-level data structures [4, page 55], that are “important in efficiently

implementing a modern verification process” [4, page 55]. The Programming

Language Interface (PLI) and Verilog Procedural Interface (VPI) counterbal-

ance this limitation by augmenting Verilog with the full power and capability

of the C programming language.

SystemVerilog, on the other hand, is considered suitable for verification

because it “is able to raise the level of abstraction compared to plain Verilog”

[4, page 55] by offering, among other features, high-level data structures and

object-oriented constructs [4, page 56]. Nevertheless, the Direct Programming

Interface (DPI) augments SystemVerilog with the full power and capability of

the C programming language.
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These interfaces enable simulators to invoke user-defined C functions:

• PLI and VPI enable behavioral Verilog code to invoke C functions through

system tasks and system functions [17, pages 362–363] and call-

backs [18, pages 374–375].

• DPI enables behavioral SystemVerilog code to invoke C functions through

imported tasks and imported functions [16, page 402]. Invoked

C functions may then, in turn, invoke SystemVerilog tasks and func-

tions through exported tasks and exported functions respectively

[16, page 410].

They also serve as a C library that enables invoked C functions to inspect and

modify objects in instantiated designs [18, page 376] with varying degrees of

capability: VPI offers the most and DPI offers the least, while PLI offers a

balance between the two [35, pages 14–15].

A.2 Functional verification

Functional verification is the process of determining whether a design satisfies

a specification [13, page 1][4, page 1] composed of one or more expectations

[2, 00:13:09–00:13:24].

An expectation is a statement that specifies (1) a scenario and (2) the

expected behavior of a design placed in that scenario [2, 00:32:01–00:32:12].

As a result, expectations are naturally expressed in terms of stimulus and

response [4, page 30]. For instance, one might say“when the design is subjected

to condition X (the stimulus), it should behave in manner Y (the response)”.
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A design is systematically verified for functional correctness by iteratively

checking whether it satisfies each expectation in its specification. This check

is performed, in accordance to the stimulus and response defined by an expec-

tation, by (1) applying the stimulus to the design and (2) confirming that the

design exhibits the expected response.

A.2.1 Simulator-driven functional verification

In simulator-driven functional verification, a simulator invokes C functions—

through Verilog PLI & VPI and SystemVerilog DPI—in an executable spec-

ification to verify certain aspects of an instantiated Verilog or SystemVerilog

design. This simulator-centric approach causes expectations to be written un-

naturally, in a discontinuous, piecewise manner because the specification is not

in control of verifying its design.

To illustrate, suppose that you (the specification) order a breakfast meal

(the design) at a restaurant (the simulator). Instead of serving your meal

all at once, this restaurant iteratively serves one subset of your meal at a

time. Furthermore, the size of each serving and the delay between servings is

unpredictable because you are not in control of your meal. As a result, you

are made to eat unnaturally, in a discontinuous, piecewise manner.

A.2.2 Design-driven functional verification

Design-driven functional verification is a subset of simulator-driven functional

verification where C functions, in an executable specification, are invoked

through system/imported tasks and functions. Since these constructs are
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statements in a design’s source code, the design drives the verification pro-

cess firsthand and therefore verifies itself.

This approach introduces tight coupling (see section B.1) between a design

and its executable specification because changes in either (1) the number of

C functions or (2) the names of C functions in the specification necessitate

analogous changes to the system/imported tasks and functions in the design’s

source code.

Self-generative callbacks can eliminate such coupling—if they are initially

scheduled by a function whose pointer exists within the vlog_startup_routines

array—because unlike system/imported tasks and functions, they do not re-

quire modification of a design’s source code [26, page 3].

A.2.3 Specification-driven functional verification

In specification-driven functional verification, an executable specification ver-

ifies its Verilog design firsthand by progressively (1) applying a stimulus to

the design, (2) simulating the design by temporarily transferring control to the

simulator, and (3) verifying the design’s response to the applied stimulus.

This approach makes a design independent from its specification because

changes in the specification do not necessitate changes in the design’s source

code. It allows expectations to be written naturally, in a continuous, sequential

manner as shown in figure 3.3.

In the realm of software development, this approach is better known as

unit testing (see [14]) because it encourages a mode of iterative development

where each Verilog design (the unit) is functionally verified by its dedicated,
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personal specification (the test). Moreover, it reflects the traditional way in

which Verilog designs were functionally verified [32, pages 81–83], where a

design’s inputs would be manipulated using a sequence of time-delayed behav-

ioral Verilog statements and its outputs would be recorded onto a text file by

(1) printing signal values using $display statements or (2) emitting a wave-

form in Verilog Change Dump (VCD) format. This recording would then be

validated against a golden reference model, which defines how the recording

should appear if it is indeed correct, either (1) by manual inspection or (2)

through the aid of automated diff tools.

A.3 Inter-process communication

Inter-process communication (IPC) is the mechanism by which (1) processes

or (2) threads within different processes communicate with one another. Such

communication is necessary in distributed applications where processes, run-

ning within different computer systems on a common network, solve problems

cooperatively.

Inter-process communication is characterized into two classes: synchronous

and asynchronous. The following subsections discuss these classes as well as

technologies that enable them.

A.3.1 Asynchronous communication

Asynchronous methods of inter-process communication are well suited for dis-

tributed applications involving the computation of independent tasks. For
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example, consider a distributed business application which retrieves the num-

ber of new employees hired every year in the last 50 years. Assuming that

the process of retrieving the number of new employees hired in a given year

does not depend on that of the previous year, we can distribute the overall

calculation across 50 different processes—each of which calculates the number

of new employees hired during a single year—and combine their individual

results into one suitable for the overall calculation.

Asynchronous methods are error-prone in multi-threaded programming

environments [24] due to lack of built-in synchronization facilities, such as

semaphores, to prevent communication of obsolete or incorrect data.

A.3.1.1 Shared memory

Before the introduction of message-passing models of asynchronous communi-

cation in the late 1970’s [20], a technique called “shared memory” was widely

in use by supercomputers as a means of inter-process and -processor commu-

nication [20]. As the name suggests, this technique involves the reading and

writing of data or messages to an area of shared memory.

The disadvantages of this approach are that (1) it does not scale well for

distributed applications running on computing clusters [20] and (2) it has

synchronization issues such as race conditions—which further complicate a

distributed application as semaphores are necessary to mitigate them. In ad-

dition, this approach is susceptible to failure as the corruption of the shared

memory by a disgruntled process can bring it down, so to speak.
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Component Object Model Component Object Model (COM) is a shared-

memory model of inter-process communication for the Microsoft Windows op-

erating system [24]. It was originally implemented through the “clipboard”

facility and provided naming services through the “registry” facility of said

operating system [24].

Although the use of COM is widespread in Microsoft Windows based appli-

cations, their programming interface can be quite inhibiting. In particular, (1)

COM has“no implementation inheritance, thus a component defining a derived

interface must implement all functions of the base interfaces again” [24], (2)

it is susceptible to failure because the event of a “registry” corruption [24] can

render inter-process communication nonfunctional, and (3) it can destabilize

the remainder of the operating system [24]. In addition, COM operates on a

single processor and does not facilitate communication over a network [24, 20].

A.3.1.2 Parallel Virtual Machine

Parallel Virtual Machine (PVM) is a programming interface that allows dis-

tributed applications to function over a heterogeneous network composed of (1)

machines of different architectures and (2) processes implemented in different

programming languages [20, 34]. PVM achieves such portability by providing

the necessary “message format transformation to hide differences in computer

architectures” [20].

PVM is “based on the premise that a collection of independent computer

systems, interconnected by networks, can be transformed into a coherent, pow-

erful, and cost-effective concurrent computing resource” [34]. In other words,
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the aim of PVM is to craft the illusion that a computation is occurring on

a single machine [20]. This enables developers to focus on implementing the

calculation performed by their distributed application rather than becoming

enveloped within the myriad of complexities introduced by low level inter-

process communication.

PVM is very dynamic, in the sense that processes and machines can be

added to and removed from the distributed computation without having to

bring down the entire network [20]. It also provides a naming service, which

allows processes to dynamically discover other processes and services without

being hard-coded to do so [20]. Lastly, PVM is fault tolerant as it can dynam-

ically detect and send a notice, indicating which computer became faulty, to

functional computers [20]. Alternatively, PVM can command a faulty machine

to reboot itself—thereby minimizing unavailability of computational resources

on the network.

A.3.1.3 Message Passing Interface

Message Passing Interface (MPI) is a programming interface for distributed

applications that was originally developed by supercomputer vendors so that

their applications could be compatible with each other [20]. It was designed to

function over a homogeneous network of processes and processors, allowing it

to take advantage of native network calls to make inter-process communication

more efficient [20].

MPI provides a powerful library of communication procedures that allow

(1) point-to-point communication between two processes and (2) point-to-
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group communication between a single process and a group of processes [20].

However, due to its reliance on network homogeneity, it cannot function over

a network of machines with different architectures or processes implemented

in different programming languages.

MPI is static, in the sense that processes and machines cannot be added

to and removed from a distributed computation without having to bring down

the entire network [20]. Consequently, it does not provide a common naming

service that would enable processes and groups of processes to discover each

other. Instead, groups and communication paths must be manually allocated

before a distributed computation is started. Finally, MPI does not have a

failure resolution mechanism to revive faulty machines on the computational

network [20].

Despite these shortcomings, MPI goes a step further, in terms of message-

passing communication methods, in providing support for seamless communi-

cation of derived data-types [20, 34]. In other words, one is not strictly limited

to primitives—data types that are integral to a programming language, such

as an integer, character, or floating-point number—while performing inter-

process communication.

A.3.2 Synchronous communication

Synchronous methods of inter-process communication are well suited for dis-

tributed applications involving the computation of interdependent tasks. For

example, consider a distributed business application which calculates a statis-

tical correlation between the number of new employees hired in a given year
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with that of the previous year, for each year in the last 50 years. In this situ-

ation, we cannot simply delegate the computation onto 50 different processes,

which perform independently of each other, and combine their results at the

end. Instead, each process must communicate with one that is computing the

statistical correlation of the year before that of itself.

In this manner, synchronous communication can become complex as the

number dependencies in the functional decomposition of a computation in-

crease.

A.3.2.1 Remote Procedure Call

Remote Procedure Call (RPC), introduced in 1984 [42], is a programming

interface allows a process to execute a procedure or routine on a remote pro-

cessor as if it were executed on its own [24]. It seamlessly encapsulates the

synchronous communication necessary to perform procedure calls by automat-

ically transmitting procedure-call arguments and return values [24]. However,

only primitive data types may be used in performing remote procedure calls

[24, 20].

The following subsections describe methods of synchronous communication

which are based upon RPC.

A.3.2.2 Distributed Common Object Model

Distributed Common Object Model (DCOM) is a programming interface for

the Microsoft Windows operating system [20]. Microsoft describes it as “COM

with a long wire”[20] because it adds networking functionality to COM through
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RPC [20]. It can function across a homogeneous network of processes and

heterogeneous network of processors—which run the Microsoft Windows op-

erating system [20].

However, like COM, DCOM utilizes the “registry” facility of said operating

system for naming services and is therefore susceptible to failure (see section

A.3.1.1).

A.3.2.3 Remote Method Invocation

Remote Method Invocation (RMI), introduced with the Java Developer’s Kit

1.1 [42], is a programming interface specific to the Java programming lan-

guage. It can be thought of as an object-oriented version of RPC which allows

an object in one Java Virtual Machine (JVM) to invoke a method on an object

within another JVM—be it local or remote [42, 33]. In particular, RMI facili-

tates transparent serialization of objects and entire trees of their references—

which allows one to pass complex data-structures, both local and remote [24],

as arguments in addition to primitive data-types—and provides a naming ser-

vice which allows Java objects to discover each other. Also, because the JVM

can function on a majority of processor architectures [33, 42], RMI can func-

tion over a heterogeneous network of processors and homogeneous network of

JVM processes.

RMI changes the way developers think about and design distributed ap-

plications [42] by introducing the notion of “stubs” and “skeletons”, which de-

couple inter-process communication interfaces—i.e. the interface construct

of the Java programming language—from their implementation [42, 33]. The
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term “stub” refers to the interface seen by a Java application that wishes to

invoke a remote procedure, while the term “skeleton” refers to the implemen-

tation of the stub’s Java programming interface [42, 33]. When a remote

procedure is invoked through the stub’s interface, the stub communicates

with the skeleton in the remote JVM, thereby performing a remote proce-

dure call [42, 33]. In addition, stubs can be downloaded from a remote JVM

on demand [24], which makes RMI ideal for dynamic, ad hoc wireless or mobile

networks.

A.3.2.4 Common Object Request Broker Architecture

Common Object Request Broker Architecture (CORBA) is a programming

interface which functions over a heterogeneous network of processes and pro-

cessors [20] and, more importantly, is “supported by a large industry consor-

tium”[24]. It centralizes inter-process communication through a primary proxy

known as the Object Request Broker (ORB) [20], which separates the imple-

mentation of computational procedures—known as“object services”[20]—from

their RPC interfaces [20, 24].

Like MPI, CORBA is particularly useful for static computational networks,

but ill-suited for dynamic ones, such as ad hoc wireless or mobile networks [24].

A.3.3 Graphical programming

In addition to asynchronous and synchronous programming interfaces for im-

plementing distributed applications, there exist graphical methods which al-

low one to implement“program decomposition, communication primitives (like
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PVM and MPI calls) and task assignment to network topologies” [20]. In par-

ticular, [20] cites a relatively successful project named “GRAPNEL”, which

implements the aforementioned goals of graphical programming. This project

also supports an integrated development environment, named “GRADE” [20],

which features a distributed debugger, performance monitor, and visualization

tools [20]. However, [34] notes that these graphical systems have not had much

main-stream acceptance as methods of inter-process communication.

A.3.4 Conclusions

With the massive transition from low to high level methods of inter-process

communication in effect during the last twenty years, it would seem that there

is a trend in favor of encapsulating complex system-dependent communication

routines [20, 24] in standard high level programming interfaces. With the ad-

vent of high level methods previously discussed, the creation and management

of communication paths between various processes may very well become the

next problem—especially in static methods such as MPI and CORBA.

Upcoming graphical programming interfaces seek to facilitate the man-

agement of communication paths and resource allocation by allowing one to

visually connect processes together. Despite not having received much atten-

tion as of yet [34], these methods may prove useful in managing computational

networks in the future, as the number of machines available to perform dis-

tributed computations increases dramatically over time.
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A.4 Agile practices

Big ships turn slowly. —Unknown

Traditional heavy-weight software development practices try to minimize un-

foreseen changes to a project plan by strictly adhering to precomputed re-

quirements, schedules, and costs [44]. In contrast, agile software development

practices embrace and adapt to unforeseen changes as and when they occur

[44]. According to [3], these practices have a set of common, underlying char-

acteristics that unify them under the “agile” name [7, page 213]:

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

A.4.1 Test driven development

Test driven development (TDD) is an iterative software development practice

that “requires writing automated tests prior to developing functional code in

small, rapid iterations” [19, page 43]. In particular, the TDD defines a devel-

opment process where [19, page 44]:

For every tiny bit of functionality in the production code, you
first develop a test that specifies and validates what the code will
do. You then produce exactly as much code as will enable that
test to pass. Then you refactor (simplify and clarify) both the
production code and the test code.
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TDD plays a central role, along with pair programming and source code refac-

toring, in eXtreme Programming (XP)—one of the better known agile software

development methodologies [19, page 43].

A.4.2 Behavior driven development

Behavior driven development (BDD) is a subset of TDD which emphasizes

thinking in terms of behavior rather than testing [2]. It achieves this primarily

through the use of a very specific vocabulary that engages developers, man-

agers, analysts, and entrepreneurs alike [27] in characterizing the desired, or

expected, behavior of systems they wish to design, develop, verify, analyze,

and finally market. This vocabulary differs from that of TDD. For instance,

the TDD terms “test” and “unit” are replaced by “specification” in BDD [2].

Likewise, the TDD notion of “assertion” is replaced by “expectation” in BDD

[2].

Due to its focus on characterization and analysis of behavior, BDD plays

a more important role in the design process than it does in verification [2].

A.5 Domain specific languages

Unlike general purpose programming languages, Domain Specific Languages

(DSLs) are suited for solving a specific family of problems [9] because they

allow you to express ideas and think in terms of the issues that pertain to the

particular domain of the problem at hand. For example, the Structured Query

Language (SQL) is a DSL that facilitates storage, retrieval, and manipulation
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of data housed within a relational database. In addition, the Starbucks coffee

shop DSL: “Venti half-caf, non-fat, no foam, no whip latte” [10, slide 6], and

the music conductor’s DSL: “Route 66, swinging, easy on the chorus, extra

solo at the coda, and bump at the end” [10, slide 6] are more examples.

DSLs are not a new phenomenon; some of today’s general purpose pro-

gramming languages were originally DSLs [9]:

The older programming languages (Cobol, Fortran, Lisp) all
came into existence as dedicated languages for solving problems in
a certain area (respectively business processing, numeric computa-
tion and symbolic processing). Gradually they have evolved into
general purpose languages

Despite this evolution, thorough studies of DSLs have only begun in recent

years because “over and over again the need for more specialized language

support to solve problems in well-defined application domains has resurfaced”

[9].

A.5.1 Alternatives

DSLs are often substituted with (1) subroutine libraries and (2) object-oriented

and component frameworks [9]. The former provides an interface through

which an existing general purpose programming language solves problems in

a certain domain. Consequently, it is “the classical method for packaging

reusable domain-knowledge” [9]. The latter goes a step further by encapsu-

lating subroutine libraries within a high level framework that directly invokes

application-specific code [9].
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A.6 Ruby programming language

Sometimes people jot down pseudo-code on paper. If that pseudo-
code runs directly on their computers, it’s best, isn’t it? Ruby tries
to be like that, like pseudo-code that runs. —Yukihiro Matsumoto

Ruby is a very high level, general purpose, object oriented programming lan-

guage invented by Japanese computer scientist Yukihiro Matsumoto in the

early 1990’s [30, 39]. It offers a harmonious balance between the functional and

imperative styles of programming by blending the essence of Perl, Smalltalk,

Eiffel, Ada, and Lisp [30] into one language. In addition, Ruby is considered

to be an agile language because (1) it values programmer productivity over

machine efficiency, (2) it aids interpersonal communication through its clear,

expressive syntax and high readability, and (3) it is a dynamic language that

not only embraces but facilitates change [22, pages 3–8].

A.6.1 Object oriented

Like Smalltalk, Ruby is truly object oriented because everything—including

such things as integers, floating point numbers, classes, modules, and methods—

is an object in Ruby [30]. For example, invoking the integer fifteen’s next

method yields the integer sixteen, as illustrated by figure A.1. Here, the dollar

sign ($) represents a command prompt and the expression “puts 15.next” is

evaluated at the command line.
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$ ruby -e "puts 15.next"

16

Figure A.1: Invoking a method on an integer in Ruby.

A.6.2 Anytime processing

Unlike C, C++, and Java, programs written in Ruby are not compiled into

machine instructions before execution. Instead they are executed on the fly,

so to speak, by the Ruby interpreter in a way that replaces the traditional

dichotomy of run time and compile time processing with the notion of

anytime processing [39, page 400]:

You can add code to a running process. You can redefine meth-
ods on the fly, change their scope from public to private, and so
on. You can even alter basic types, such as Class and Object.

Some might argue that, due to dynamically linked libraries, C and C++ also

have the ability to add code to a running process. However, this is just one

aspect of anytime processing because such processing also allows you to alter

the essential data types of the language as well. For example, imagine that

when you loaded a particular dynamically linked library with C or C++, it

redefined the int type as a linked list of char types. Now, any code that

utilizes int would unknowingly be using a linked list! Such is the power

granted by anytime processing.
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A.6.3 Scripting language

Due to its dynamic nature, Ruby is considered to be a scripting language

[30]. Languages in this family are “generally characterise[d]. . . as high-level

programming languages, less efficient but more flexible than compiled lan-

guage” [28]. Listed below are common characteristics of scripting languages.

They are interpreted dynamically rather than being compiled statically,

thereby“allowing quick turnaround development and making applications more

flexible through runtime programming” [28].

They are dynamically typed, in the sense that variables are not declared

before use and that subroutines specify neither the type of parameters they

accept nor the type of value they return. For example, Ruby “has the ‘duck-

typing’ mechanism in which object types are determined by their runtime

capabilities instead of by their class definition” [28].

They enable metaprogramming, a mechanism by which a program dy-

namically programs itself, as they“do not strongly separate data and code, and

allow code to be created, changed, and added during runtime” [28]. It is impor-

tant to note that metaprogramming is not a new concept. Before the advent

of third-generation programming languages, such as C, it was once common to

write “self-modifying code”, which allowed a program to dynamically altered

its own behavior, in assembly languages.

They allow reflection “(the possibility to easily investigate data and code

during runtime) and runtime interrogation of objects instead of relying on their

class definitions” [28] and are thereby“suited for flexible integration tasks” [28].
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A.6.4 A platform for DSLs

The fascinating thing is that, in my experience, most well-written
Ruby programs are already a DSL, just by nature of Ruby’s syntax.
—Jamis Buck [10, slide 22]

Ruby is a viable platform for implementing DSLs because its syntax is un-

obtrusive enough to facilitate domain-specific expression without the need to

write and maintain a custom compiler [11, 10]. Furthermore, its strong meta-

programming capability reduces the amount of code necessary to implement a

DSL [10].

In addition to providing a means of structural expression for a DSL, Ruby

enables general purpose programmability within the DSL itself [11]. To illus-

trate, imagine that SQL (see section A.5) was implemented as a DSL in Ruby.

Now, you can use loops, libraries, and higher-order programming techniques

within your SQL programs to solve complex problems with less effort.

A.6.5 On the rise

Ruby was relatively unknown in the English speaking countries of the West

until recent years because reference documentation and learning materials were

only available in Japanese [39, page xviii]. The famous “pick axe” book (see

[38]) changed this situation for the better when it was published in late 2000.

Since then, many more books have been written and Ruby has gained

tremendous acceptance [30]. In fact, it was declared as the programming

language of 2006 by [37], a monthly index which “gives an indication of the

popularity of programming languages” [37]. However, many attribute this
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astounding achievement to “the popularity of software written in Ruby, par-

ticularly the Ruby on Rails web framework” [30] rather than to the language

itself.
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Appendix B

Glossary

B.1 Tight coupling

Two or more components of a system are tightly coupled [25, pages 100–102]

when a change in one of them necessitates, in order to maintain interoper-

ability, an analogous change in the rest. Tight coupling increases the amount

of effort necessary to change a system, thereby reducing its changeability [6,

page 14], because all coupled components must be updated when one of them

changes. It also increases the complexity [6] of a system because one must re-

member which components are coupled in order to propagate changes between

them.

B.2 Executable specification

An executable specification is simply the combination of (1) a set of rules and

(2) the logic necessary to check that those rules are satisfied.
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B.3 System tasks and functions

System functions in Verilog and imported/exported functions in SystemVerilog

are analogous to function calls in C [35, page 4 and 8]. System tasks are the

same as system functions, except that they cannot return a value [35, page

4]. Likewise, imported/exported tasks are the same as imported/exported

functions, except that they cannot return a value [35, page 8].

Both Verilog and SystemVerilog provide (1) a set of standard system tasks,

such as $display and $time, and (2) a set of standard system functions, such

as such as $sin and $cos [18, page 277][16, page 385]. In addition, a user can

provide their own system/imported tasks and functions, which invoke user-

defined C functions, using Verilog PLI & VPI and SystemVerilog DPI.

B.4 Callbacks

A callback is a mechanism that makes a Verilog simulator invoke a C function

either (1) at a certain time or (2) upon a certain event during a simulation

[18, page 375]. Neither Verilog nor a Verilog simulator provide a default set of

callbacks. Instead, callbacks are registered by a user through VPI [18, pages

375–376].

B.4.1 Self-generative callbacks

A callback is self-generative if, upon execution, it schedules another instance

of itself either (1) at a future time or (2) upon a future event [36, pages 232–

233].
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